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Ball indentation test has been established as a powerful
means for measuring hardness for metals and alloys for
a long time and the outputs of this test are known as
the Brinell hardness. In order to yield a reliable hard-
ness number, it is generally required that the resultant
indentation impression should be large enough, i.e., the
ratio of the radius of the resultant plastic impression,
a, to the indenter radius, R, should be larger than 0.25
[1]. Little effort has been devoted to the determination
of hardness of brittle glasses and ceramics with ball
indentation. This may be attributed to the facts that:
(1) brittle glasses and ceramics are usually harder than
metals and alloys, making it very difficult to produce
an indentation impression with an a/R ratio larger than
0.25 at low load levels, and (2) when a hard sphere is
pressed against the brittle materials under a sufficiently
high load, the resultant contact stress would cause a
preexisting flaw in the specimen surface to propagate,
resulting in some uncertainties in the hardness determi-
nation.

On the other hand, the microcracking behavior of
brittle materials associated with ball indentation has
been studied extensively [2] and theoretical analysis
and experimental observations have confirmed that the
minimum applied load necessary to propagate the pre-
existing surface flaws can be used to determine the frac-
ture toughness of the test material [3]. Furthermore, the
ball indentation experiments have also been applied to
study the surface residual stresses [4], the surface flaw
densities [5] and the local strength [6]. In these previous
studies, significant permanent deformation was usually
observed in brittle materials when being indented with
hard spheres, even if the resultant indentation impres-
sion has an a/R ratio smaller than 0.25. Some experi-
mental results previously reported for 9 mol% Ce-TZP
ceramics [7] are shown in Fig. 1, where the ordinate is
the “indentation stress,” po = P /ma? and the abscissa
is the “indentation strain,” a/R. Also shown in Fig. 1 is
a solid line predicted for the sample TZP-III by the clas-
sical Hertzian relation for purely elastic contacts [2],
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where k is a dimensionless constant determined by the
Young’s modulus, E, the Poisson’s ratio, v, of the test
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material and the Young’s modulus, Ej, the Poisson’s
ratio, vy, of the indenter,
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The derivation of the measured data from the ideal
elastic behavior indicates that significant permanent
deformation would occur even at the lowest indentation
load. Similar phenomena were also observed for other
brittle materials [8].

In this letter, we will show that an empirical method
for determining the hardness of brittle materials may be
established by analyzing the indentation stress-strain
curves, such as those shown in Fig. 1, measured with
ball indentation.

We start our analysis by defining the hardness as the
ratio of the work done by indentation load, W, to the
permanent deformation zone volume, V. Such a defi-
nition was frequently adopted in the previous studies
[9, 10] concerning the analysis of the indentation size
effect, i.e., an experimental phenomenon that the mea-
sured hardness decreases or increases with increasing
indentation load. For brittle materials, the ball inden-
tation stress-strain curve measured in low load regime
can be approximately treated to be linear. Thus, to the
first approximation, we have

1
W = _Ph 3
> 3

where h = R— (R? — a?)"? is the indenter penetration
depth at peak load.

From geometry, the permanent deformation zone
volume, V, can be expressed as

T
V= ghp(3a2 +h7) 4)

where h;, is the final depth of the resultant indentation
impression measured after full unloading.

Using Equations 3 and 4, we obtain the basic equation
for hardness calculation
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Figure 1 Indentation stress versus indentation strain plots for some Ce-
TZP ceramics. Indentation tests were conducted using WC balls of radius
R = 1.2-12.5 mm over a load range P = 200-3000 N. See ref. [7] for
details about the materials and the test procedures.

In general, 3a® > hg. Thus, Equation 5 can be ap-

proximated as
h
H= — 6
Po ( hp> (6)

Equation 6 implies that the hardness, H would be
equal to the indentation stress or the mean contact
stress, po, if hy, = h. However, nanoindentation tests
conducted with ball or pyramid indenters [11, 12] have
confirmed that the final depth of the contact impression
measured after full unloading is usually smaller than
the indenter penetration depth, implying that elastic re-
covery occurs during the unloading half-cycle. This is
to say that, at least for indentation impressions made
under small load, H would be larger than py because
hp < h. Noting that hardness should be a material con-
stant, one can infer from Equation 6 that py would in-
crease with increasing h,/ h.

It is usually difficult to measure /s, during conven-
tional Brinell indentation tests. Therefore, Equation 6
cannot be directly used to calculate hardness number.
However, an empirical method for extracting the hard-
ness number from the indentation stress-strain curves
such as those shown in Fig. 1 can be proposed based on
the above analysis. Re-plotting the experimental data
shown in Fig. 1 as Fig. 2, where the indentation stress
is plotted as functions of 4#/R. As can be seen, if the 4/R
ratio is selected as the measure of the indentation strain,
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the stress-strain curves exhibit an interesting feature: pg
increases gradually with /R and a plateau value of pg
can be expected when 4/R tends to be infinite. One can
expect that the elastic recovery may be so small that it
can be neglected, i.e., hp/h ~ 1, when the indentation
is made under a very high load. Thus, it is reasonable
to infer that the plateau value of py shown in Fig. 2 can
be treated, at least approximately, to be the hardness
number of the test material.

Now we try to determine the plateau value of pg. This
can be done easily by noting the similarity between
the stress-strain curves shown in Fig. 2 and the typi-
cal cyclic fatigue deformation curves. In low-amplitude
cyclic fatigue tests conducted on metals [13] and single
crystalline silicon [14], it was generally observed that,
as the cumulative shear-strain, y, increases, the max-
imum stress in each cycle, o, increases gradually and
then tends to a saturation value when y tends to infin-
ity. Gong et al. [15] proposed the following equation to
describe the cyclic fatigue deformation curve measured
on single crystalline silicon,

o:om—agexp(—%>—oMexp<—kl) @)
G M

where the parameters 0, 0G, oM, Ag and Ay are ad-
justable constants.

Gong et al. [15] suggested that the second and the
third terms in the right-hand side of Equation 7 repre-
sent the effects of the dislocation generation and the dis-
location motion on the cyclic deformation resistance,
respectively. Because the material resistances to dislo-
cation generation and dislocation motion increase as
the cumulative strain increases, the values of both the
second and the third terms would decrease as y in-
creases and become zero when a well-developed dislo-
cation structure forms. Undoubtedly, the deformation
behavior of a material during indentation is somewhat
similar to that during cyclic fatigue. Thus, an expres-
sion similar to Equation 7 may be employed to de-
scribe the indentation stress-strain curves, i.e., we can
write
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Figure 2 Replotting the experimental data shown in Fig. 1 in the po versus /R scale.
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TABLE I Comparison between the hardness values determined from
different methods

Material TZP-1 TZP-I TZP-IIl TZP-IV

Hardness from this study (GPa) 7.30 7.31 7.61 8.41
Vickers hardness [7] (GPa) 6.85 7.28 7.28 7.11

where the parameters H, pg, pm, Ag and Ay are ad-
justable constants. Following the above analysis, H in
Equation 8 is the plateau value of py, i.e., the hardness
number we want to determine.

The solid lines shown in Fig. 2 are obtained by ana-
lyzing the experimental data according to Equation 8.
It is evident that, for each material, Equation 8 pro-
vides a satisfactory description for the experimental
data. The best-fit value of H for each material is com-
pared with the reported Vickers hardness in Table 1.
Considering that the Vickers hardness was determined
using only one load level (100 N) [7] and there may
be some uncertainties in the Vickers hardness data due
mainly to the indentation size effect, there is reason
to believe that the good agreement between these two
sets of data is evident, giving a sound support for our
analysis.

In summary, we established an empirical method
for extracting a hardness number from the indentation
stress-strain curves measured from low-load ball inden-
tation tests. This method can be used for the hardness
measurements for brittle materials, which are usually
so hard and brittle that conventional Brinell hardness
measurements cannot be performed.
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